RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

$\textbf{B.A./B.Sc.} \ \textbf{FIRST SEMESTER EXAMINATION, DECEMBER 2018}$

FIRST YEAR (BATCH 2018-21) COMPUTER SCIENCE (General)

Time : 11.00 am – 1.00 pm Paper : I Full Marks : 50

Date : 19/12/2018

[Use a separate Answer Book for each Group]

$\underline{Group-A}$

Answer any one question from Question Nos. 1 & 2:			
1.	a)	Apply K-map method to obtain the minimal form for the function:	[3]
		$F(A,B,C,D) = \sum (0,4,5,7,8,9,13,15)$	
	b)	What do you mean by positional number system?	[2]
2.	a)	State absorption law.	[1]
	b)	What is prime implicant?	[1]
	c)	Convert the followings:	[1.5+1.5]
		i) $(1762.46)_8 = (X)_{16}$ ii) $(BC70.0E)_{16} = (X)_8$	
An	swer	any two questions from Question Nos. 3 to 6:	[2×10]
3.	a)	A 12-bit Hamming Code word containing 8-bits of data. What is the original 8-bit word if	the
		12-bit read out is as follows?	[3]
		0011 0110 0101.	
	b)	Expand $A(\bar{A}+B)(\bar{A}+B+\bar{C})$ to maxterms and minterms.	[2+2]
	c)	Draw the logic diagram using NOR gate to implement the following expression:	[3]
		$F(A, B, C, D) = A(\overline{B} + \overline{C}D) + B\overline{C}$	
4.	a)	Apply De Morgan's theorem to the following expression:	[3]
		$\overline{\left(\overline{A+B} ight)\!\left(\overline{C+D} ight)}\overline{\left(\overline{E+F} ight)\!\left(\overline{G+H} ight)}$	
	b)	Prove that if A+B=A+C and $\overline{A}+B=\overline{A}+C$, then B=C	[2]
	c)	What do you mean by ASCII?	[2]
	d)	Define Reflective code.	[2]
	e)	What is natural BCD code?	[1]
5.	a)	Define positively and negatively weighted codes.	[1.5+1.5]
	b)		[2]
	c)	Add (27.125) to (-79.625) using the 12-bit 2's complement arithmetic.	[2]
	d)	Express (-73.75) in 12-bit 2's complement form.	[2]
	e)	Define sign-magnitude form.	[1]
6.	a)	Divide $(33)_{10}$ by $(5)_{10}$ in binary using the computer method.	[4]
	b)	Multiply (1010) ₂ by (1001) ₂ using the computer method.	[4]
	c)	Define parity bit.	[2]

$\underline{Group-B}$

Ans	wer	any one question from Question Nos. 7 & 8:	$[1\times5]$
7.	a) b)	Differentiate between SRAM and DRAM. Explain the term 'temporal locality of reference' with example.	[2] [3]
8.	Rea	alize a SR flip-flop using D flip-flop.	[5]
Ans	wer	any two questions from Question Nos. 9 to 12:	[2×10]
9.	a)b)c)	Differentiate between CISC and RISC. Write down the function of instruction register. Design and implement a 2-bit magnitude comparator circuit.	[3] [2] [5]
10.	a) b)	Design an AND gate using MUX. Design a 2-bit asynchronous up counter using positive edge triggered T flip-flop and explain its operation.	[5] [5]
11.	a)	Implement the following function using a 4:1 MUX: $F(A,B,C) = AB + \overline{B}C$	[3]
	b) c)	Explain indirect addressing mode with example. Design a 3-bit PISO shift left register and explain its operation.	[3] [4]
12.	a)b)c)d)	Write down the working principle of an encoder. Explain 'write back protocol' of cache memory. What are the differences between latch and flip-flop? How can a D flip-flop be operated in toggle mode?	[2] [2.5] [3] [2.5]